Press about our work: Molekülschwingungen im Daumenkino

DPG – PRO PHYSIK wrote about our work:

Molekülschwingungen im Daumenkino

  • 06. October 2016

Zwei Forschergruppen gelingt die Aufnahme molekularer Schwingungen mit Röntgen- und Elektronenpulsen.

Nicht nur Chemiker träumen davon, Schwingungen und Reaktionen von Molekülen wie in einem Film aufzunehmen. Auch für viele biologische Prozesse – insbesondere für photo­induzierte Reaktionen – würde dies ein ganz neues Verständnis ermöglichen. Zwar gibt es bereits einige Methoden, die solche Filme liefern können. Sie basieren jedoch meist auf indirekten Messungen des Zustandes, etwa aus Bestimmungen des Absorptions­spektrums. Will man aus solchen „femto­chemischen” Messungen die Dynamik des Moleküls berechnen, so benötigt man ein gutes Vorver­ständnis der Potenzial­oberfläche der elek­tronischen Zustände in Abhängigkeit von der Form des Moleküls, was natürlich die Zahl der zu unter­suchenden molekularen Reaktionen begrenzt…

 

continue reading on

http://www.pro-physik.de/details/news/9927491/Molekuelschwingungen_im_Daumenkino.html

Viewpoint: Showtime for Molecular Movies

Marc Vrakking wrote a Viewpoint for our latest publication on diffraction from molecular wavepakets:

 

“The scientist Ahmed Zewail (1946–2016) was awarded the Nobel Prize in Chemistry in 1999 for his contributions to femtochemistry, the field that studies chemical changes on the time scales on which atoms move—femtoseconds (fs). Femtochemistry experiments follow the electronic or structural dynamics of a molecule by first exciting it with a femtosecond “pump” laser pulse, and then observing it using a delayed “probe” pulse [1]. Most femtochemistry experiments, however, probe molecules through indirect observables: They rely on the fact that the chemical dynamics are accompanied by changes in the molecule’s absorption spectrum. Two independent groups now use more direct approaches to the visualization of atomic motions, recording molecular “movies” by time-resolved x-ray diffraction [2] and time-resolved electron diffraction [3], respectively. Both experiments image, in real time, the changes of the distance separating the two atoms in a vibrating iodine ( I2) molecule. The results represent important progress in our ability to record ultrafast molecular movies with increasing spatial and temporal resolution without relying on complex models.”

… continue reading on:

http://physics.aps.org/articles/v9/112